- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Acton, Scott T (2)
-
Korban, Matthew (2)
-
Youngs, Peter (2)
-
Foster, Jonathan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
Acton, Scott T (2)
-
Korban, Matthew (2)
-
Youngs, Peter (2)
-
Foster, Jonathan (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Korban, Matthew; Acton, Scott T; Youngs, Peter; Foster, Jonathan (Ed.)Instructional activity recognition is an analytical tool for the observation of classroom education. One of the primary challenges in this domain is dealing with the intri- cate and heterogeneous interactions between teachers, students, and instructional objects. To address these complex dynamics, we present an innovative activity recognition pipeline designed explicitly for instructional videos, leveraging a multi-semantic attention mechanism. Our novel pipeline uses a transformer network that incorporates several types of instructional seman- tic attention, including teacher-to-students, students-to-students, teacher-to-object, and students-to-object relationships. This com- prehensive approach allows us to classify various interactive activity labels effectively. The effectiveness of our proposed algo- rithm is demonstrated through its evaluation on our annotated instructional activity dataset.more » « less
-
Korban, Matthew; Youngs, Peter; Acton, Scott T (, IEEE)Korban, Matthew; Youngs, Peter; Acton, Scott T (Ed.)Analyzing instructional videos via computer vision and machine learning holds promise for several tasks, such as assessing teacher performance and classroom climate, evaluating student engagement, and identifying racial bias in instruction. The traditional way of evaluating instructional videos depends on manual observation with human raters, which is time-consuming and requires a trained labor force. Therefore, this paper tests several deep network architectures in the automation of instruc- tional video analysis, where the networks are tailored to recognize classroom activity. Our experimental setup includes a set of 250 hours of primary and middle school videos that are annotated by expert human raters. We present several strategies to handle varying length of instructional activities, a major challenge in the detection of instructional activity. Based on the proposed strategies, we enhance and compare different deep networks for detecting instructional activity.more » « less
An official website of the United States government
